

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG The University of Resources, Since 1765.

Kevin Keller Brennhausgasse 14 D-09599 Freiberg Tel.: +49 3731 39 4348 mail: kevin.keller@mineral.tu-freibera.de

Shock-induced synthesis of spinel-type Ge_3N_4

M. R. Schwarz, K. Keller, J. Heinz, M. Köhler, N. Schreiter, D. Weile, T. Schlothauer, E. Kroke, G. Heide

XII International Symposium on Explosive Production of New Materials: Science, Technology, Business, and Innovations (EPNM-2014) May 25-30 Cracow, Poland

The Freiberg High-Pressure Group

Inst. of Theoretical Physics

 \rightarrow simulation \rightarrow prediction

Prof. J. Kortus group leader

Inst. of Inorganic Chemistry \rightarrow static experiments \rightarrow precursors

Prof. E. Kroke group leader

 \rightarrow dynamic experiments \rightarrow characterisation

Prof. G. Heide group leader

S. Schmerler scientist

Dr. M. Schwarz scientist

M. Voigtländer technician

T. Schlothauer scientist

Dr. K. Keller scientist

K. Keller Shock-induced synthesis of spinel-type Ge_3N_4

Institute of Mineralogy TU Bergakademie Freiberg

Outline

Group IV-nitrides

Experimental

Shock Synthesis Powder Processing

Shock Synthesis of γ -Ge₃N₄

Scanning Electron Microscopy Phase Analysis Raman spectroscopy

Conclusion and Outlook

29 May 2014 EPNM-2014 K. Keller Shock-induced synthesis of spinel-type ${\rm Ge}_3{\rm N}_4$

Group IV-nitrides

Structure and properties of M₃N₄ substances

- trigonal $\alpha M_3 N_4$ and hexagonal $\beta M_3 N_4$ ($\alpha M_3 N_4 \xrightarrow{HT} \beta M_3 N_4$)
- e.g. β -Si₃N₄ ceramic material (high strength, wear resistance, good HT-properties) and microelectronic (dielectric properties)
- β -Si₃N₄ and β -Ge₃N₄ corner-shared SiN₄ or GeN₄ tetrahedra

13

Illa

A Si Ρ

10.81 B

15

Ν

Nitroger 30.9

74.92

As

Sb

B

14 IV/a Va

32 72.61

Group IV-nitrides

M₃N₄ @ high-pressure

- γ-Si₃N₄, γ-Ge₃N₄ and γ-Sn₃N₄: cubic spinel structure (Fd3m) with octahedral and tetrahedral coordination of Si, Ge and Sn
- β -Ge₃N₄ $\longrightarrow \gamma$ -Ge₃N₄ at 12-15 GPa + > 1000 °C (kinetic barrier!) Leinenweber et al. (1999)
- shock synthesis for higher sample mass (mass production and comprehensive charcterisation) HE ET AL. (2001)
- γ-Ge₃N₄: band gap in optical region, hardness 34 GPa, bulk modulus 240-295 GPa SHEMKUNAS ET AL. (2004)
- predicted post-spinel phase (in analogy with e.g. Fe₃O₄ and Mg₂SiO₄) with higher coordination
- β-C₃N₄ hypothetical, predicetd for super-hardness, intensive research

Experimental — Shock Synthesis

Starting material

- ammonolysis by ball milling of GeO₂ in ammonia atmosphere
- $\blacksquare \ \mathrm{GeO}_2 + 4 \, \mathrm{NH}_3 \longrightarrow \mathrm{Ge}_3 \mathrm{N}_4 + 6 \, \mathrm{H}_2 \mathrm{O}$
- \blacksquare mixture of $\beta\text{-}\mathsf{Ge}_3\mathsf{N}_4$ (67 %), $\alpha\text{-}\mathsf{Ge}_3\mathsf{N}_4$ (23 %) and Ge (10 %)

Processing of sample after shock synthesis

- mechnical opening of container
- etching with HNO₃

SEM & EDX Analysis (before and after etching)

Before etching

- Ge–Cu intermetallics
- Ge crystals
- Ge–N phases

After etching

- cubic-shaped plates of Ge–O (μm-sized)
- nanosized Ge–N phases

SEM & EDX Analysis (before and after etching)

Before etching

- Ge–Cu intermetallics
- Ge crystals
- Ge–N phases

After etching

- cubic-shaped plates of Ge–O (μm-sized)
- nanosized Ge–N phases

Shock Synthesis of γ -Ge₃N₄— Phase Analysis

Phase composition after shock (before etching)

• γ -Ge₃N₄ and Ge (thermal decomposition Ge₃N₄ \longrightarrow 3Ge + 2N₂), minor β -Ge₃N₄ • formation of Cu–Ge alloys (Cu₅Ge₂ and Cu₃Ge), some Cu

K. Keller Shock-induced synthesis of spinel-type Ge₃N₄

Shock Synthesis of γ -Ge₃N₄— Phase Analysis

Phase composition after etching

- FP-GN1: 36 % γ-Ge₃N₄, 58 % α-GeO₂, 1 % β-Ge₃N₄
- FP-GN2: 29 % γ-Ge₃N₄, 65 % α-GeO₂, 2 % β-Ge₃N₄

29 May 2014 EPNM-2014

K. Keller Shock-induced synthesis of spinel-type Ge₃N₄

9

Shock Synthesis of γ -Ge $_3N_4$ - Raman spectroscopy

Raman spectroscopy of etched samples

- starting material: β-Ge₃N₄ and Ge PARKER ET AL. (1967)
- shocked samples: α -GeO₂, very weak signal of γ -Ge₃N₄ doing et al. (2000)
- additional line at 779 cm⁻¹ and very strong line T_{2g} at \sim 730 cm⁻¹ \rightarrow defects and deviation in stochiometry DEB ET AL. (2000); SERGHIOU ET AL. (1999)

29 May 2014 EPNM-2014

K. Keller Shock-induced synthesis of spinel-type Ge₂N₄

Shock Synthesis of γ -Ge $_3N_4$ - Raman spectroscopy

Raman spectroscopy of etched samples

- starting material: β-Ge₃N₄ and Ge PARKER ET AL. (1967)
- shocked samples: α -GeO₂, very weak signal of γ -Ge₃N₄ Dong et al. (2000)
- additional line at 779 cm⁻¹ and very strong line T_{2g} at \sim 730 cm⁻¹ \rightarrow defects and deviation in stochiometry DEB ET AL. (2000); SERGHIOU ET AL. (1999)

29 May 2014 EPNM-2014

K. Keller Shock-induced synthesis of spinel-type Ge₂N₄

Shock Synthesis of γ -Ge $_3N_4$ — Raman spectroscopy

Raman spectroscopy of etched samples

- starting material: β-Ge₃N₄ and Ge PARKER ET AL. (1967)
- shocked samples: α -GeO₂, very weak signal of γ -Ge₃N₄ Dong et al. (2000)
- = additional line at 779 cm⁻¹ and very strong line T_{2g} at \sim 730 cm⁻¹ \rightarrow defects and deviation in stochiometry DEB ET AL. (2000); SERGHIOU ET AL. (1999)

29 May 2014 EPNM-2014

K. Keller Shock-induced synthesis of spinel-type Ge₂N₄

To sum it up...

- synthesis of spinel-type γ-Ge₃N₄
- structural inevstigation with XRD and Raman
- shock synthesis causes less-ordered/less-crystalline material (compared to static synthesis)

Further things to come..

- synthesis of pure samples
- investigation of stability of IV-nitrides @ HP (γ -Si₃N₄, γ -Ge₃N₄, γ -Sn₃N₄) → post-spinel phase?
- study of spinel defect structure and crystallinity (influence of synthesis method)

To sum it up...

synthesis of spinel-type γ-Ge₃N₄

- structural inevstigation with XRD and Raman
- shock synthesis causes less-ordered/less-crystalline material (compared to static synthesis)

Further things to come..

- synthesis of pure samples
- investigation of stability of IV-nitrides @ HP (γ -Si₃N₄, γ -Ge₃N₄, γ -Sn₃N₄) → post-spinel phase?
- study of spinel defect structure and crystallinity (influence of synthesis method)

To sum it up...

- synthesis of spinel-type γ -Ge₃N₄
- structural inevstigation with XRD and Raman
- shock synthesis causes less-ordered/less-crystalline material (compared to static synthesis)

Further things to come..

- synthesis of pure samples
- investigation of stability of IV-nitrides @ HP (γ -Si₃N₄, γ -Ge₃N₄, γ -Sn₃N₄) → post-spinel phase?
- study of spinel defect structure and crystallinity (influence of synthesis method)

To sum it up...

- synthesis of spinel-type γ-Ge₃N₄
- structural inevstigation with XRD and Raman
- shock synthesis causes less-ordered/less-crystalline material (compared to static synthesis)

Further things to come...

- synthesis of pure samples
- investigation of stability of IV-nitrides @ HP (γ -Si₃N₄, γ -Ge₃N₄, γ -Sn₃N₄) → post-spinel phase?
- study of spinel defect structure and crystallinity (influence of synthesis method)

To sum it up...

- synthesis of spinel-type γ-Ge₃N₄
- structural inevstigation with XRD and Raman
- shock synthesis causes less-ordered/less-crystalline material (compared to static synthesis)

Further things to come...

- synthesis of pure samples
- investigation of stability of IV-nitrides @ HP (γ-Si₃N₄, γ-Ge₃N₄, γ-Sn₃N₄) → post-spinel phase?
- study of spinel defect structure and crystallinity (influence of synthesis method)

Acknowledgements

This work was performed as a part of a students course in solid state chemistry.

Financial support

- Dr. Erich Krüger-Foundation
- Excellence Initiative of the Saxonian Government, promoted by the European Union

Further support

- C. Röder (Raman spectroscopy)
- Team of the Reiche Zeche mine

Thank you for your kind attention!

References

DEB, S.K. ET AL. (2000): "The Raman spectra of the hexagonal and cubic (spinel) forms of Ge₃N₄: an experimental and theoretical study". In: Solid State Communications 114. 3, pp. 137 –142.

DONG, JIANUUN ET AL. (2000): "Theoretical study of β -Ge₃N₄ and its high-pressure spinel γ phase". In: Phys. Rev. B 61 (18), pp. 11979–11992. HE, H. ET AL. (2001): "Phase transformation of germanium nitride (Ge₃N₄) under shack wave compression". In: J. Appl. Phys. 90. 9, pp. 4403–4406. LEINENWEBER, K. ET AL. (1999): "Synthesis and Structure Refinement of the Spinel, γ -Ge₃N₄". In: Chem. Eur. J. 5. 10, pp. 3076–3078. PARKER, J. H. ET AL. (1967): "Raman Scattering by Silicon and Germanium". In: Phys. Rev. 155 (3), pp. 712–714.

SCHLOTHAUER, T. ET AL. (2012): "Shock wave synthesis of oxygen-bearing spinel-type silicon nitride γ -Si₃(O,N)₄ in the pressure range from 30 to 72 GPa with high purity". In: Minerals as Advanced Materials II. Ed. by Krivovichev, S. V. Springer Berlin / Heidelberg, pp. 389–401.

SERGHIOU, G. ET AL. (1999): "Synthesis of a cubic Ge₃N₄ phase at high pressures and temperatures". In: The Journal of Chemical Physics 111. 10, pp. 4659–4662.

SHEMKUNAS, M. P. ET AL. (2004): "Hardness, elasticity, and fracture toughness of polycrystalline spinel germanium nitride and tin nitride". In: J. Mater. Res. 19, pp. 1392–1399.